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The problem

The problem:

. Consider a market without arbitrage profits.

. Suppose some agents have additional information.

. Can they use this information to realize arbitrage profits?

Mathematically:

. market : (Ω, F , F, P, S), with F satisfying the usual conditions,
S = (S i )i=1,...,d non-negative semimartingale, S0 ≡ 1.

. additional information:
- progressive enlargement of filtration (with any random time)
- initial enlargement of filtration

. arbitrage profits: ...(some motivation first)...
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The basic example

. Let W be a standard Brownian motion on (Ω, F , FW , P).

. Let S represent the discounted price of an asset and be given by

St = exp

(
σWt −

1

2
σ2t

)
, σ > 0 given.

. Let S∗t := sup{Su, u ≤ t} and define the random time

τ := sup{t : St = S∗∞} = sup{t : St = S∗t }

. An agent with information τ can follow the arbitrage strategy

“buy at t = 0 and sell at t = τ”

Remark. Here τ is an honest time: ∀ t ≥ 0 ∃ ξt FW
t -measurable

s.t. τ = ξt on {τ ≤ t} (e.g., ξt := sup{u ≤ t : Su = supr≤t Sr}).
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Different notions of arbitrage

X (F, S) admissible wealth processes: X x ,H := x +
∫ ·

0 HtdSt ≥ 0

We use the notation:

NA(F, S): there is no X 1,H∈X (F,S) s.t. P
[
X 1,H
∞ ≥ 1

]
= 1,

P
[
X 1,H
∞ > 1

]
> 0.

NFLVR(F,S): there are no ε > 0, 0 ≤ δn ↑ 1, X 1,Hn ∈ X (F, S)

s.t. P
[
X 1,Hn

∞ > δn
]

= 1, P
[
X 1,Hn

∞ > 1 + ε
]
≥ ε.

NA1(F,S): there is no ξ ≥ 0 with P [ξ > 0] > 0 s.t. for all
x > 0, ∃X ∈ X (F, S) with X0 = x and P [X∞ ≥ ξ] = 1.

Remark. NA1 (Kardaras, 2010) ⇐⇒ BK (Kabanov, 1997)
⇐⇒ NUPBR (Karatzas,Kardaras 2007)
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Martingale measures and deflators

I NFLVR ⇐⇒ NA + NA1

I NFLVR ⇐⇒ ∃ equivalent local martingale measure for S

I NA1 ⇐⇒ ∃ supermartingale deflator (Karatzas,Kardaras’07):
Y > 0,Y0 = 1 s.t. YX is a supermartingale ∀X ∈ X

⇐⇒ ∃ loc. martingale deflator (Takaoka,Schweizer’13, Song’13):
Y > 0,Y0 = 1 s.t. YX is a local martingale ∀X ∈ X

⇐⇒ ∃ treadable loc. martingale deflator (A.F.K.’14):
Y local martingale deflator s.t. 1/Y ∈ X (up to Q ∼ P)
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Why NA1? - Let me try to convince you

. As seen in the basic example, NA and NFLVR easily fail
under additional information.

. Whereas when an arbitrage exists we are in general not able
to spot it, when an arbitrage of the first kind exists we are
able to construct (and hence exploit) it (NA1 is completely
characterized in terms of the characteristic triplet of S).

. NA1 is the minimal condition in order to proceed with utility
maximization.

. NA1 is stable under change of numéraire.

. NA1 is equivalent to the existence of a numéraire portfolio X ∗

(= growth optimal portfolio = log optimal portfolio), in which
case 1/X ∗ is a supermartingale deflator.
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Some related work (NA1 preservation)

On progressive enlargement:

Fontana, Jeanblanc, Song 2013:
S continuous, PRP, τ honest and avoids all F-stopping times,
NFLVR in the original market. Then in the enlarged market:

. on [0,∞): NA1, NA and NFLVR all fail;

. on [0, τ ]: NA and NFLVR fail, but NA1 holds.

Kreher 2014:
all F-martingales are continuous, τ avoids all F-stopping
times, NFLVR in the original market.

Aksamit, Choulli, Deng, Jeanblanc 2013:
using optional stochastic integral, (S quasi-left-continuous).

On initial enlargement: nothing in the literature that we are
aware of. Some work in progress by Jeanblanc et al.
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Progressive enlargement of filtrations

I Let τ be a random time (= positive, finite, F-measurable r.v.).

I Consider the progressively enlarged filtration G = (Gt)t∈R+ ,

Gt := {B ∈ F | B ∩ {τ > t} = Bt ∩ {τ > t} for some Bt ∈ Ft} .

I Jeulin-Yor theorem ensures that H′-hypothesis holds up to τ :
every F-semimartingale remains a G-semimartingale up to time τ
(in particular Sτ is a G-semimartingale).
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Our main tools

. The Azéma supermartingale associated to τ :

Zt := P [τ > t | Ft ]

. Let A be the F-dual optional projection of I[[τ,∞[[, so that

∆Aσ = P [τ = σ|Fσ] for all F-stopping times σ.

. Define the stopping time ζ := inf {t ∈ R+ | Zt = 0} ≥ τ .

. Define Λ := {ζ <∞, Zζ− > 0, ∆Aζ = 0} ∈ Fζ
= set where Z jumps to zero after τ

. and define

η := ζIΛ +∞IΩ\Λ

Note that τ < η; η = time when Z jumps to zero after τ .
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Representation pair associated with τ

Theorem (Itô,Watanabe 1965, Kardaras 2014).
The Azéma supermartingale Z admits the following multiplicative
decomposition:

Z = L(1− K ),

where:

L is a nonnegative F-local martingale with L0 = 1,

K is a nondecreasing F-adapted process with 0 ≤ K ≤ 1,

for any nonnegative optional processes V on (Ω, F),

E[Vτ ] = E
[∫

R+

Vt LtdKt

]
.

.. Together with the stopping time η, the local martingale L will
play a main role in our results.
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Back to the basic example

Asset price process: St = exp

(
σWt −

1

2
σ2t

)
Random time: τ := sup{t : St = S∗∞}

In this case

Zt = P [τ > t | Ft ] =
St
S∗t

Therefore:

. η =∞ and L = S

. Y := 1/Lτ = 1/Sτ is a local martingale deflator for Sτ in G.

⇒ NA1 holds while NA and NFLVR fail.

Remarks.
1) Analogous situation for τ ′ := sup{t : St = a}, 0 < a < 1.

2) The decomposition Zt = Lt/L
∗
t holds for a wide class of honest

times (see Nikeghbali,Yor 2006, Kardaras 2013, A.,Penner 2014)
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Local martingales in the progressively enlarged filtration

Remember: η is the time when Z jumps to zero after τ .

Proposition. Let X be a nonnegative F-local martingale such that
X = 0 on [[η,∞[[. Then X τ/Lτ is a G-local martingale.

. The main tool in the proof of the proposition is the
multiplicative decomposition of Z .

As an immediate consequence we have the following

Key-Proposition. Suppose there exists a local martingale deflator
M for S in F such that M = 0 on [[η,∞[[. Then Mτ/Lτ is a local
martingale deflator for Sτ in G.
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An important lemma

=⇒ To have preservation of the NA1 property, given a deflator
for S in F, we want to “kill it” from η on.

We will do it with the help of the following lemma.

Lemma. Let D be the F-predictable compensator of I[[η,∞[[. Then:

∆D < 1 P-a.s. (⇒ E(−D) > 0 and nonincreasing);

E(−D)−1I[[0,η[[ is a local martingale on (Ω, F, P).

Main idea: for any predictable time σ on (Ω, F),

∆Dσ = P [η = σ | Fσ−] < 1 on {σ <∞}.
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NA1 under progressive enlargement: one fixed S

. We have preservation of NA1 under the condition: S does not
jump when Z jumps to zero:

Theorem (one fixed S). Suppose P [η <∞, ∆Sη 6= 0] = 0.

If NA1(F, S)holds, then NA1(G,Sτ )holds.
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Proof of the theorem

Recall: D is the F-predictable compensator of I[[η,∞[[.

NA1(F, S) ⇒ ∃X̂ ∈ X (F,S) s.t. Y := (1/X̂ ) is a local
martingale deflator for S in F (⇒ ∆Y = 0 when ∆S = 0).

In order to apply the Key-Proposition, we need a deflator for
S in F that vanishes on the set [[η,∞[[.

Let M := Y E(−D)−1I[[0,η[[ (⇒ {M > 0} = [[0, η[[).

By the Lemma, MS −
[
E(−D)−1I[[0,η[[,YS

]
F-local martingale.

We want M to be a deflator for S in F, so we need to show
that the quadratic covariation part is an F-local martingale.

∆Sη = 0⇒ ∆(YS)η = 0⇒ [.., ..] =
[
E(−D)−1,YS

]
, which is

indeed an F-local martingale.

⇒ (X̂−1E(−D)−1L−1)τ is a deflator for Sτ in G
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NA1 under progressive enlargement: any S

Theorem (general stability). TFAE:

1) for any S s.t. NA1(F,S) holds, NA1(G,Sτ )holds;

2) η =∞ P-a.s.;

3) For every nonnegative local martingale X on (Ω, F, P), the
process X τ/Lτ is a local martingale on (Ω, G, P);

4) The process 1/Lτ is a local martingale on (Ω, G, P).
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Proof of the theorem

2) ⇒ 1): from previous Theorem.

1) ⇒ 2): suppose P [η <∞] > 0. Define

S := E(−D)−1I[[0,η[[.

Then S is a F-local martingale, and Sτ is nondecreasing with
P [Sτ > 1] > 0. Hence NA1(F, S)holds, but NA1(G, Sτ )fails.

2) ⇒ 3): from the Proposition.

3) ⇒ 4): trivial.

4) ⇒ 2): uses properties of the processes L and K appearing in the
multiplicative decomposition of Z .
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On the H′-hypothesis

Proposition. Let X be a nonnegative F-supermartingale. Then,
the process X τ/Lτ is a G-supermartingale.

Remark. This can be used to establish that for any semimartingale
X on (Ω, F, P), the process X τ is a semimartingale on (Ω, G, P).

Indeed:

By the Proposition, ∀ X nonnegative bounded F-local
martingale ⇒ X τ/Lτ and 1/Lτ are G-semimartingales ⇒
X τ is a G-semimartingale.

From the semimartingale decomposition + localisation, same
result for any F-semimartingale X .
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Initial enlargement of filtrations

I Let J be an F-measurable random variable taking values in a
Lusin space (E ,BE ), where BE denotes the Borel σ-field of E .

I Let G = (Gt)t∈R+ be the right-continuous augmentation of the
filtration G0 = (G0

t )t∈R+ defined by

G0
t := Ft ∨ σ(J), t ∈ R+.

I Let γ : BE 7→ [0, 1] be the law of J (γ [B] = P [J ∈ B], B ∈ BE ).

I For all t ∈ R+, let γt : Ω× BE 7→ [0, 1] be a regular version of
the Ft-conditional law of J.

Jacod’s hypothesis. We assume

γt � γ P-a.s., t ∈ R+.

This ensures the H′-hypothesis and that we can apply Stricker&
Yor calculus with one parameter (L1(Ω,F ,P) separable).
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Our main tools

O(F) (resp. P(F)) is the F-optional (resp. pred.) σ-field on Ω×R+

Lemma. There exists a BE ⊗O(F)-measurable function
E × Ω× R+ 3 (x , ω, t) 7→ pxt (ω) ∈ [0,∞), càdlàg in t ∈ R+ s.t.:

- ∀t ∈ R+, γt(dx) = px
t γ(dx) holds P-a.s;

- ∀x ∈ E , px = (pxt )t∈R+ is a martingale on (Ω, F, P).

. For every x ∈ E define

ζx := inf{t ∈ R+ | pxt = 0}.

. Let Λx := {ζx <∞, pxζx− > 0} ∈ Fζx and define

ηx := ζxIΛx +∞IΩ\Λx , x ∈ E

Note that ηx (= time at which px jumps to zero) is a
stopping time on (Ω, F).
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ζx := inf{t ∈ R+ | pxt = 0}.

. Let Λx := {ζx <∞, pxζx− > 0} ∈ Fζx and define

ηx := ζxIΛx +∞IΩ\Λx , x ∈ E

Note that ηx (= time at which px jumps to zero) is a
stopping time on (Ω, F).
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NA1 under initial enlargement

. Similar results for the martingale deflators lead to:

Theorem (one fixed S). Let P [ηx <∞,∆Sηx 6= 0] = 0 γ-a.e.
If NA1(F, S)holds, then NA1(G,S) holds.

Theorem (general stability). TFAE:

1) ηx =∞ P-a.s. for γ-a.e x ∈ E .

2) for all X ≥ 0 BE ⊗O(F)-meas. s.t. X x F-loc.martingale
vanishing on [[ηx ,∞[[ γ-a.e., X J/pJ is a G-loc.martingale

3) The process 1/pJ is a G-loc.martingale

And 1) ⇒ For any S s.t. NA1(F,S)holds, NA1(G, S) also holds.

. Some care for the converse; we can derive H′-hyp.
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Problem formulation and motivation

Progressive enlargement of filtration

Initial enlargement of filtration

Examples
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Example 1: progressively enlarged filtration

. Consider ζ : Ω 7→ R+ such that P [ζ > t] = exp(−t),∀ t ∈ R+.

. Let F = (Ft)t∈R+ be the smallest filtration that satisfies the
usual hypotheses and makes ζ a stopping time.

. Define τ := ζ/2.

. Note that Zt := P [τ > t|Ft ] = exp(−t)I{t<ζ} for all t ∈ R+.

. Note that ζ = inf {t ≥ 0 | Zt = 0} =: η <∞ P-a.s.

. The F-pred. comp. of I[[η,∞[[ is D := (η ∧ t)t∈R+ .

. S := E(−D)−1I[[0,η[[ = exp(D)I[[0,η[[, that is, St = exp(t)I{t<ζ}.

. S nonnegative F-martingale ⇒ NA1(F,S).

. But S is strictly increasing up to τ ⇒ NA1(G,Sτ ) fails.
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Example 2: initially enlarged filtration

. Consider a Poisson(λ) process N stopped at time T ∈ (0,∞).

. Let F be the right-cont. filtration generated by N and J := NT .

. Then (Grorud,Pontier 2001) pxT = e−λT x!/(λT )xI{NT =x} and

pxt = e−λt
(
λ(T − t)

)x−Nt

(λT )x
x!

(x − Nt)!
I{Nt≤x}, ∀ t ∈ [0,T ).

. St := exp
(
Nt − λt(e− 1)

)
, for all t ∈ [0,T ].

. S is a strictly positive F-martingale ⇒ NA1(F,S) holds.

. Define the G-stopping time σ := inf {t ∈ [0,T ] | Nt = NT}.

. For all t ∈ [0,T ], we get

(−I]]σ,T ]]·S)t = I{t>σ} exp
(
Nσ−λσ(e−1)

)(
1−exp

(
−λ(t−σ)(e−1)

))
.

. −I]]σ,T ]] · S is nondecreasing, P [σ < T ] = 1 ⇒ NA1(G,S) fails.

Note: px have positive probability to jump to zero exactly in
correspondence of the jump times of the Poisson process N
(condition P [ηx <∞,∆Sηx 6= 0] = 0 γ-a.e. fails).
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Conclusions

. We provide a simple and general condition for preservation of
NA1 under filtration enlargement for any fixed semimartingale
model.

. We obtain a characterization of NA1 stability under filtration
enlargement in a robust context, that is, for all possible
semimartingale models.

. We use easy techniques.

. We obtain parallel results under progressive and initial
enlargements.

Thank you for your attention!
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